Innovative methods in Cancer Screening

How Norway explores AI and uses the world's most powerful computer power to predict who has the largest risk of cervical cancer

Mari Nygård, MD, PhD Head Research Department, Cancer Registry of Norway

State

Transitions between stages

Progression

Screening program

Mass-screening - a concept from 1960ies

Screening

cytology exam for population without symptoms

<u>Diagnostic confirmation and</u> treatment

Punch biopsy forceps

Loop electrosurgical excision procedure

Mass-screening program - a concept from 1960ies was implemented in 1995 in Norway

ID - women

date of the screening exam

diagnose

About 12.5 M exams
Including date and results

ID- patient date of the diagnostic exam date of the treatment diagnose

Annually

about 10,000 Punch biopsies

About 6,000 treatments

Mass-screening program - a concept from 1960ies was implemented in 1992 in Norway

ID - women

date of the screening exam

diagnose

Screening

cytology exam for population without symptoms

1.8 M women in the database

About 12.5 M exams Including date and results

90% of test are normal, 2% suggest disease, 5% suggest that "something is going on", 3 % are technical failures

<u>Diagnostic confirmation and</u> treatment

Annually about 10,000 Punch biopsies About 6,000 treatments

Including date and results

Cervical pre-cancers and cancers by age in 2014-2016 Norway

Harms of the mass-screening program: over-screening and over-treatment

Distribution of 25-69 yrs old women with different screening results

Cervical pre-cancers and cancers by age in 2014-2016 Norway

Mass-screening program is not reaching to all women

Proportion of those with one screening test in suggested time interval in Norway by age and year:

65% 25-39 yrs old 71% 40-54 yrs old

Screening should reach to those who need it most

Cancer incidence is highest among suboptimally screened

Harmonizing Screening According To Risk

Future Issues: Integration of Important Modifiers of Cervical Cancer Risk (personalized screening) Screening History, Integration of new biomarkers e.g., genotyping, p16 Ki67, mRNA, Methylation, HPV Vaccination

An HPC Application to Population-Level Cancer Screening Data

HPC and Data Intensive Resources at LLNL
Personal level data from the Cancer Registry of Norway

LLNL-PRES-75300

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Aim

... to make cancer prevention programs more flexible, scalable and sustainable by use of the personalized algorithms.

If proven effective, our project will introduce a paradigm shift from mass-screening to a personalized prevention.

Hidden Markov Model - joint probability model

State Transitions between stages — Progression — Regression — Normal Low High Cancer — Treatment — Death

Model Screenings as Noisy Observations with Possible Misclassification

Continuous-Time Markov Process for Cervical Cancer

States

1 Low Grade
2 High Grade
3 Cancer

Transitions
Progression
Regression
Death

HPC and Data Intensive Resources at LLNL

- Catalyst, Quartz (Intel Ivy Bridge)
 - 7,776 cores across 324 nodes with 24 cores per node; 96,768 cores across 2,634 nodes with 36 cores per node
- Inference Algorithm
 - Implemented a modified EM algorithm in parallel to compute Maximum Likelihood Estimates (MLEs) of all model parameters.
- Simulations and Model Fit
 - Simulated <u>synthetic population</u> data from learned models
 Age-ignorant age-dependent model
 - Compute Kaplan-Meier estimators for different outcomes comparatively for observed and synthetic data to assess goodness-of-fit.

Simulated Data vs Observed Data transition from normal to high-risk

Learning likelihoods

• Probability of cytology/HPV result conditioned on hidden state

		
normal cyto	logy	hrHPV positive

Test result

Normal state	99%	5.7%
Low-risk state	~0%	48.9%
High-risk state		92.4%
Cancer	2.5% HPV test is more sensitive	98.8%

Learning likelihoods for transmission intensities

Progression

Low-risk → High-risk 0.4% to 4.2%

Learning likelihoods for transmission intensities

Progression

Age group 20-24 35-39 60+

Low-risk → High-risk 0.4% to 4.2%

2.5%

3.5% 3.4%

Learning likelihoods for transmission intensities

Regression

Age group 20-24 35-39 60+

High-risk → Low-risk 5% to 22%

10.9%

6.7%

5.8%

WORK IN PROGRESS

Predict Future Disease States

• Compute probabilities for future disease states based on a patient's past test results.

$$P(S_t^{\text{new}}|X_{t_1:t_k}^{\text{new}}), t > t_k$$

When should a patient be tested next?

Idea

Given a learned model, choose the minimum time interval that results in a positive diagnosis based on a Bayes optimal decision rule.

Increasing complexity: multi-modality datasets

- Detailed information on HPV types impacting the disease differently
- HPV vaccination status: age at vaccination, vaccine type
- Other possible life-style determinants (biomarkers)

2019 - expanding the group with PhD and Post-Doc

Data-driven Framework for Personalised Cancer Screening

EEA Financial Mechanism 2014-2021 Baltic Research Programme

Our Team

- Supported
 - Giske Ursin (CRN)
 - Jim Brase (LLNL)
 - Rob Sharpe (LLNL)
 - Jason Paragas (LLNL)

Collaborators

Braden Soper, LLNL
Ghaleb Abdulla, LLNL
Ana Paula Sales, LLNL,
Pryadip Ryi, LLNL
Mari Nygard, Cancer Registry of Norway
Jan Nygard, Cancer Registry of Norway
Hang Deng, Rutgers University

